Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors.

نویسندگان

  • Zheng-Xiang Cheng
  • Dan-Mei Lan
  • Pei-Ying Wu
  • Yan-Hua Zhu
  • Yi Dong
  • Lan Ma
  • Ping Zheng
چکیده

Dehydroepiandrosterone sulphate is one of the most important neurosteroids. In the present paper, we studied the effect of dehydroepiandrosterone sulphate on persistent sodium currents and its mechanism and functional consequence with whole-cell patch clamp recording method combined with a pharmacological approach in the rat medial prefrontal cortex slices. The results showed that dehydroepiandrosterone sulphate inhibited the amplitude of persistent sodium currents and the inhibitory effect was significant at 0.1 microM, reached maximum at 1 microM and decreased with the increase in the concentrations of above 1 microM. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was canceled by the Gi protein inhibitor and the protein kinase C inhibitor, but not by the protein kinase A inhibitor. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was also canceled by the sigma-1 receptor blockers and the sigma-1 receptor agonist could mimic the effect of dehydroepiandrosterone sulphate. Dehydroepiandrosterone sulphate had no significant influence on neuronal excitability but could significantly inhibit chemical inhibition of mitochondria-evoked increase in persistent sodium currents. These results suggest that dehydroepiandrosterone sulphate inhibits persistent sodium currents via the activation of sigma-1 receptors-Gi protein-protein kinase C-coupled signaling pathway, and the main functional consequence of this effect of DHEAS is presumably to protect neurons under ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Changes in the Medial Prefrontal Cortex and Anterior Cingulate Cortex of Dehydroepiandrosterone-Induced Wistar Rat Model of Polycystic Ovarian Syndrome

Introduction: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder in women that is associated with an increased risk of infertility. This study aims to evaluate the neurobehavioral and neurochemical changes along with the associated changes in the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) of the dehydroepiandrosterone (DHEA)-induced PCOS model rats. Metho...

متن کامل

Neuroactive steroid pregnenolone sulphate inhibits long-term potentiation via activation of alpha2-adrenoreceptors at excitatory synapses in rat medial prefrontal cortex.

Pregnenolone sulphate (PREGS) is one of the most important neuroactive steroids. Previous study showed that PREGS enhanced long-term potentiation (LTP) via activation of post-synaptic NMDA receptors at excitatory synapses in the hippocampus. The present paper studied the effect of PREGS on LTP at excitatory synapses in the pyramidal cells of layers V-VI of the medial prefrontal cortex (mPFC) us...

متن کامل

D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and persistent sodium currents in prefrontal cortex pyramidal neurons.

Dopamine (DA) is a well established modulator of prefrontal cortex (PFC) function, yet the cellular mechanisms by which DA exerts its effects in this region are controversial. A major point of contention is the consequence of D(1) DA receptor activation. Several studies have argued that D(1) receptors enhance the excitability of PFC pyramidal neurons by augmenting voltage-dependent Na(+) curren...

متن کامل

Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex.

In prefrontal cortex, 5-hydroxytryptamine(2A) (5-HT(2A)) receptors have been linked to the action of hallucinogens and atypical antidepressant/antipsychotic drugs. Previously, we have shown in cortical layer V pyramidal cells that a nonselective metabotropic glutamate (mGlu) receptor agonist suppresses the induction of excitatory postsynaptic potentials/currents (EPSPs/EPSCs) via activation of ...

متن کامل

Effects of dopaminergic modulation of persistent sodium currents on the excitability of prefrontal cortical neurons: A computational study

Yang and Seamans (J. Neurosci. 16 (5) (1996) 1922}1935) have recently shown that pyramidal cells in rat prefrontal cortex respond to a brief current injection with a plateau potential that is mediated by slowly inactivating voltage-dependent sodium currents. They also report that dopamine receptor activation increases plateau duration and shifts its activation to more negative potentials. We mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 210 1  شماره 

صفحات  -

تاریخ انتشار 2008